Pin mặt trời hoạt động như thế nào?
Các pin năng lượng Mặt trời có nhiều ứng dụng trong thực tế. Chúng đặc biệt thích hợp cho các vùng mà điện lưới khó vươn tới như núi cao, ngoài đảo xa, hoặc phục vụ các hoạt động trên không gian; cụ thể như các vệ tinh quay xung quanh quỹ đạo trái đất, máy tính cầm tay, các máy điện thoại cầm tay từ xa, thiết bị bơm nước…
Pin năng lượng mặt trời là gì? Hoạt động như thế nào?
Pin năng lượng mặt trời (pin mặt trời/pin quang điện) là thiết bị giúp chuyển hóa trực tiếp năng lượng ánh sáng mặt trời (quang năng) thành năng lượng điện (điện năng) dựa trên hiệu ứng quang điện. Hiệu ứng quang điện là khả năng phát ra điện tử (electron) khi được ánh sáng chiếu vào của vật chất.
Tấm pin mặt trời, những tấm có bề mặt lớn thu thập ánh nắng mặt trời và biến nó thành điện năng, được làm bằng nhiều tế bào quang điện có nhiệm vụ thực hiện quá trình tạo ra điện từ ánh sáng mặt trời.
Chất bán dẫn
Silicon được biết đến là một chất bán dẫn. "Chất bán dẫn là vật liệu trung gian giữa chất dẫn điện và chất cách điện. Chất bán dẫn hoạt động như một chất cách điện ở nhiệt độ thấp và có tính dẫn điện ở nhiệt độ phòng". Với tính chất như vậy, silicon là một thành phần quan trọng trong cấu tạo của pin năng lượng mặt trời.
Silicon tuy có mức dẫn điện hạn chế nhưng nó có cấu trúc tinh thể rất phù hợp cho việc tạo ra chất bán dẫn. Nguyên tử silicon cần 4 electron để trung hòa điện tích nhưng lớp vỏ bên ngoài một nguyên tử silicon chỉ có một nửa số electron cần thiết nên nó sẽ bám chặt với các nguyên tử khác để tìm cách trung hòa điện tích.
Để tăng độ dẫn điện của silicon, các nhà khoa học đã “tạp chất hóa” nó bằng cách kết hợp nó với các vật liệu khác. Quá trình này được gọi là “doping” và silicon pha tạp với các tạp chất tạo ra nhiều electron tự do và lỗ trống. Một chất bán dẫn silicon có hai phần, mỗi phần được pha tạp với một loại vật liệu khác. Phần đầu tiên được pha với phốt pho, phốt pho cần 5 electron để trung hòa điện tích và có đủ 5 electron trong vỏ của nó. Khi kết hợp với silicon, một electron sẽ bị dư ra. Electron đặc trưng cho điện tích âm nên phần này sẽ được gọi là silicon loại N (điện cực N). Để tạo ra silicon loại P (điện cực P), các nhà khoa học kết hợp silicon với boron. Boron chỉ cần 3 electron để trung hòa điện tích và khi kết hợp với silicon sẽ tạo ra những lỗ trống cần được lấp đầy bởi electron.
Khi chất bán dẫn silicon tiếp xúc với năng lượng, các electron tự do ở điện cực N sẽ di chuyển sang để lấp đầy các lỗ trống bên điện cực P. Sau đó, các electron từ điện cực N và điện cực P sẽ cùng nhau tạo ra điện trường. Các tế bào năng lượng mặt trời sẽ trở thành một diode, cho phép electron di chuyển từ điện cực P đến điện cực N, không cho phép di chuyển ngược lại.
Tất nhiên, để kích hoạt quá trình cần có năng lượng tiếp xúc với các tế bào silicon. Ánh sáng mặt trời bao gồm các hạt rất nhỏ gọi là photon được tỏa ra từ mặt trời, các hạt nhỏ năng lượng có thể tiếp xúc với các tế bào năng lượng mặt trời và nới lỏng liên kết của các electron ở điện cực N. Sự di chuyển của các elentron tự do từ điện cực N tới điện cực P tạo ra dòng điện.
Khi điện trường đã được tạo ra, tất cả những gì chúng ta cần làm là thu thập và chuyển nó thành dòng điện có thể sử dụng. Một bộ biến tần được gắn với các tế bào năng lượng mặt trời sẽ biến dòng điện từ một chiều (DC) thành dòng điện xoay chiều (AC). Dòng điện xoay chiều là dòng điện chúng ta đang sử dụng ở khắp mọi nơi.
Pin mặt trời hiện tại vẫn thiếu hiệu quả
Các công nghệ biến ánh sáng mặt trời thành điện hiện tại vẫn kém hiệu quả. Các tấm pin mặt trời chưa thể hấp thụ toàn bộ năng lượng của ánh sáng mặt trời. Nói chung, những tế bào năng lượng mặt trời tốt nhất hiện tại chỉ có thể chuyển 25% năng lượng mà nó nhận được thành điện. Tại sao vậy? Thực tế là ánh sáng mặt trời, như tất cả các loại ánh sáng khác, bao gồm một quang phổ với các bước sóng khác nhau, mỗi bước sóng có một cường độ khác nhau. Có những bước sóng quá yếu không thể giải phóng các electron còn một số bước sóng lại quá mạnh với silicon.
Hơn nữa, các tấm pin mặt trời cần được đặt ở những vị trí cực kỳ đặc biệt. Góc của các tấm pin mặt trời cần được tính toán để có thể nhận được tối đa lượng ánh sáng mặt trời và đương nhiên những tấm pin mặt trời chỉ thực sự hữu ích nếu được đặt ở nơi có nhiều ánh sáng mặt trời. Đặt tấm pin mặt trời ở những nơi có thời tiết ít nắng sẽ biến chúng thành những tác phẩm nghệ thuật lố bịch và tốn kém.
Silicon đen có thể tạo ra cuộc cách mạng trong ngành công nghiệp pin mặt trời
Các nhà khoa học vẫn đang tiếp tục nghiên cứu nhằm phát triển những tấm pin mặt trời hiệu quả hơn. Các tế bào năng lượng mặt trời dạng màng mỏng, được sản xuất từ cadmium, mỏng hơn nhiều so với tế bào silicon và có khả năng hấp thụ năng lượng mặt trời tốt hơn. Nhưng hiện tại, khả năng biến năng lượng thu thập được thành điện năng của tế bào năng lượng mặt trời cadmium vẫn còn khá kém. Tuy nhiên, các nhà khoa học muốn nghiên cứu thêm về loại tế bào năng lượng mặt trời này bởi chúng có mức giá rẻ và kích thước thuận tiện.
Một trong những phát kiến lớn khác đáng được nhắc tới là “silicon đen”. Silicon đen là silicon đã qua xử lý để có bề mặt màu đen bởi màu đen hấp thụ ánh sáng tốt hơn.
Silicon đen sẽ tạo ra các tế bào năng lượng mặt trời có khả năng hấp thụ tốt hơn, đặc biệt là ở những khu vực thưa ánh sáng mặt trời hoặc thường tiếp xúc với ánh sáng mặt trời ở góc độ thấp. Hạn chế lớn nhất ở thời điểm hiện tại đó là quá trình tạo màu đen cho silicon làm tăng diện tích bề mặt của nó, điều này khiến gia tăng khả năng tái kết hợp của electron. Các electron tự do sẽ tìm kiếm sự tái kết hợp với tế bào silicon chứ không di chuyển nhằm tham gia với một nguyên tử khác để tạo ra dòng điện.
Quá trình nghiên cứu silicon đen vẫn đang tiếp diễn. Gần đây, các nhà khoa học Phần Lan đã tìm ra phương pháp giảm các trường hợp tái kết hợp, tăng khả năng chuyển hóa ánh sáng mặt trời thành điện năng lên 22,1%. Hiện mức chuyển hóa này vẫn chưa bằng silicon điển hình nhưng chắc chắn nó sẽ được cải tiến trong tương lai.

Công nghệ tàng hình là gì? Nó hoạt động thế nào?
Bạn đã từng nghe đến máy bay tàng hình, tàu ngầm tàng hình nhưng bạn có biết nghĩa của tàng hình ở đây thực sự là gì?

Điện thoại giúp nhìn xuyên thấu mọi chất liệu
Các nhà nghiên cứu tại viện công nghệ UT Dallas mới đây đã biến những chiếc điện thoại cầm tay thành thiết bị giúp người dùng có thể nhìn xuyên thấu mọi chất liệu như tường, gỗ, nhựa, giấy…

Tham vọng chế tạo Iron Man của quân đội Mỹ
Bộ Tư lệnh Lực lượng Đặc biệt của Mỹ (SOCOM) hiện đang theo đuổi một chương trình mang tính cách mạng nhằm hỗ trợ năng lực siêu nhân cho binh sĩ trong nhiệm vụ tác chiến.

Mỹ sắp phóng máy bay nhanh gấp 20 lần âm thanh
Trang Space.com cho hay, Cơ quan Dự án Nghiên cứu cấp cao Quốc phòng Mỹ (tức DARPA) đã lên kế hoạch phát triển và bay thử loại máy bay siêu âm có tên X-Plane tốc độ Mach 20 trong năm 2016.

Robot cứu hộ hình người của NASA
Cơ quan Hàng không Vũ trụ Mỹ (NASA) mới giới thiệu một loại robot mới, có khả năng đứng bằng hai chân như người và được sử dụng để hỗ trợ cho các công việc cứu hộ.

Kenguru – chiếc xe sinh ra cho người khuyết tật, chỉ có một cửa duy nhất nhưng cực tiện cho người đi xe lăn
Hãng Community Cars ở bang Texas (Mỹ) đã sáng chế ra một loại ô tô điện mang tên Kenguru, dành cho người khuyết tật phải ngồi xe lăn.
