Vàng trong Hệ Mặt trời đến từ đâu? Vàng ở đâu nhiều nhất trong Hệ Mặt trời?

Vàng ở đâu nhiều nhất trong Hệ Mặt trời? Để trả lời câu hỏi này, trước tiên chúng ta cần tìm hiểu xem vàng trong Hệ Mặt trời của chúng ta đến từ đâu.

Theo quan điểm phổ biến trong cộng đồng khoa học, vũ trụ chúng ta đang sống được sinh ra cách đây khoảng 13,8 tỷ năm, lúc ban đầu chỉ có các nguyên tố rất nhẹ trong vũ trụ, phần lớn trong số đó là hydro, heli, và các kim loại nặng như vàng. Các nguyên tố khác không tồn tại trong vũ trụ vào thời điểm đó.


 Lúc ban đầu chỉ có các nguyên tố rất nhẹ trong vũ trụ, phần lớn trong số đó là hydro, heli...

Cái gọi là phản ứng tổng hợp hạt nhân đề cập đến sự trùng hợp các hạt nhân nhẹ hơn thành hạt nhân nặng hơn. Ví dụ: hydro có thể được hợp nhất thành heli và heli có thể được hợp nhất thành carbon. Vì phản ứng tổng hợp hạt nhân của các nguyên tố nặng hơn sẽ được kích hoạt, nhiệt độ cao hơn và nhiệt độ là bắt buộc. Do đó, chỉ trong những ngôi sao rất lớn đó, vùng lõi mới có thể có nhiệt độ và áp suất đủ cao, sau đó bắt đầu hết vòng này đến vòng phản ứng tổng hợp hạt nhân, hợp nhất các nguyên tố nặng hơn và nặng hơn, chẳng hạn như oxy, neon, magiê, silic..


Một phỏng đoán hợp lý là trong Hệ Mặt trời, Mặt trời có nhiều vàng nhất.

Tuy nhiên, khi phản ứng tổng hợp hạt nhân chuyển thành sắt thì nó không thể tiếp tục được nữa, do phản ứng tổng hợp hạt nhân của sắt không giải phóng năng lượng mà hấp thụ năng lượng của lực hấp dẫn của chính nó, và ngôi sao sụp đổ nhanh chóng.

Đồng thời, các electron trong vật liệu lõi của ngôi sao sẽ bị áp suất cực lớn ép vào hạt nhân, rồi kết hợp với các proton trong đó để tạo thành neutron. Một vụ nổ dữ dội xảy ra, còn được gọi là "vụ nổ siêu tân tinh".

Bắt neutron là phản ứng trong đó các hạt nhân nhẹ hơn va chạm với neutron và tạo thành các hạt nhân nặng hơn. Sau khi xảy ra quá trình bắt neutron, các hạt nhân thường trở nên không ổn định, trong trường hợp này chúng trở nên không ổn định số nguyên tử của chúng.

Ví dụ, nếu một hạt nhân sắt-56 bắt giữ một neutron, nó sẽ trở thành sắt-57, và khi một neutron trong hạt nhân của nó trải qua quá trình phân rã beta, số nguyên tử của nó tăng lên 1, vì vậy nó trở thành coban -57.

Đúng như tên gọi, sao neutron là hành tinh được cấu tạo chủ yếu bởi neutron, chúng thực sự là lõi dày đặc của những ngôi sao lớn còn sót lại sau các vụ nổ siêu tân tinh.


Khi thái Dương Hệ được sinh ra, cũng có một lượng vàng nhất định trong tinh vân ban đầu.

Khi hai ngôi sao neutron va chạm vào nhau, cũng sẽ xảy ra một vụ nổ dữ dội, và một số lượng lớn neutron sẽ bị văng ra ngoài, sau khi mất đi sự kiềm chế của trọng lực, một số neutron sẽ sớm phân rã thành proton, electron và neutron, và sau đó một số nhẹ hơn các nguyên tố được hình thành (nơi diễn ra các phản ứng tổng hợp hạt nhân), sau đó xảy ra hiện tượng "bắt nơtron nhanh", dẫn đến một số lượng lớn các nguyên tố nặng, và vàng là một trong số đó.

Thái Dương Hệ được sinh ra. Cũng có một lượng vàng nhất định trong tinh vân ban đầu nhưng sự phân bố vàng này trong tinh vân phải tương đối đồng đều.

Vì vậy, một phỏng đoán hợp lý là trong Hệ Mặt trời, Mặt trời có nhiều vàng nhất, sau cùng, nó chiếm khoảng 99,86% khối lượng của toàn bộ Hệ Mặt trời. Đó thực sự là trường hợp? Câu trả lời là có.

Ngay từ năm 2014, các nhà khoa học đã xác định hàm lượng vàng trong Mặt trời thông qua phân tích quang phổ của Mặt trời và tỷ lệ này là khoảng 8 nguyên tử vàng trên mỗi 1 nghìn tỷ nguyên tử hydro. Vàng cao tới 2,34x10 ^ 21 kg, tức là 23,4 tỷ tấn.

Để bạn dễ hình dung, nếu tất cả vàng trong Mặt trời được khai thác và chất thành một khối lập phương, khối lập phương sẽ có chiều dài một cạnh khoảng 495km. Nếu vẫn khó tưởng tượng, bạn biết rằng độ cao quỹ đạo của trạm vũ trụ hoạt động trong không gian là 400km - có nghĩa là nếu chúng ta đặt khối lập phương này lên bề mặt Trái đất, độ cao của nó sẽ cao hơn quỹ đạo của trạm vũ trụ khoảng 95km.

Loading...
TIN CŨ HƠN
Kính viễn vọng James Webb chuẩn bị dọ thám 2

Kính viễn vọng James Webb chuẩn bị dọ thám 2 "siêu Trái đất" kỳ lạ

Kính viễn vọng không gian James Webb sẽ khám phá những thế giới mới ở một mức độ chi tiết chưa từng có trước đây.

Đăng ngày: 08/05/2025
Tìm hiểu về tia gamma và chớp gamma

Tìm hiểu về tia gamma và chớp gamma

Tia gamma (kí hiệu là γ) là một loại bức xạ điện từ hay quang tử có tần số cực cao.

Đăng ngày: 08/05/2025
Phát hiện thêm

Phát hiện thêm "ngôi nhà tương lai" cho loài người

Trong hành trình khám phá vũ trụ và tìm kiếm các hành tinh có khả năng sống, các nhà khoa học đã phát hiện ra một hành tinh đáng chú ý mang tên Gliese 667C c.

Đăng ngày: 08/05/2025
Trái đất sẽ bị huỷ diệt vào năm 2029 hay 2036?

Trái đất sẽ bị huỷ diệt vào năm 2029 hay 2036?

Nhiều nhà nghiên cứu tin rằng một tiểu hành tinh có thể va chạm vào Trái đất vào bất cứ lúc nào. Và các số liệu thống kê cho thấy rằng một thiên thể to cỡ quả bóng đá hoàn toàn có khả năng huỷ diệt sự sống trên trái đất

Đăng ngày: 07/05/2025
Hành tinh

Hành tinh "siêu Trái Đất" có thể chứa sự sống

Một ngoại hành tinh ở cách 111 năm ánh sáng có thể là phiên bản lớn của Trái Đất với những điều kiện phù hợp cho sự sống.

Đăng ngày: 07/05/2025
Màu sắc thực sự của Mặt trời là gì?

Màu sắc thực sự của Mặt trời là gì?

Con người thường thấy Mặt Trời màu vàng nhưng thực chất, ngôi sao này phát ra ánh sáng mạnh nhất màu xanh.

Đăng ngày: 04/05/2025
Làm thế nào để nhìn thấy dải Ngân hà?

Làm thế nào để nhìn thấy dải Ngân hà?

Dưới một bầu trời đêm quang đãng, không trăng và vắng ánh đèn thành phố, bạn sẽ thấy vẻ đẹp lộng lẫy của thiên hà.

Đăng ngày: 03/05/2025
Tiêu điểm
Khoa Học News