10 thí nghiệm đẹp nhất trong lịch sử
Những thí nghiệm khoa học hiện nay thường phức tạp, chỉ có thể thực hiện bởi một nhóm nghiên cứu, với chi phí lên tới hàng triệu USD. Tuy nhiên, khi được hỏi về thí nghiệm "đẹp" nhất trong lịch sử khoa học, người ta lại tôn sùng các ý tưởng đơn giản.
Điểm danh 10 thí nghiệm đẹp nhất trong lịch sử
Mới đây, tiến sĩ Robert Crease, thuộc khoa triết của Đại học New York (Mỹ), đã làm một cuộc thăm dò ý kiến của các nhà khoa học về "thí nghiệm đẹp nhất trong lịch sử". Kết quả, không phải những thí nghiệm hiện đại và phức tạp (về phân tích gene, về hạt hạ nguyên tử hay đo ánh sáng của các ngôi sao xa...) được chọn là "đẹp" nhất, mà chính những thí nghiệm đơn giản như đo chu vi trái đất, tán xạ ánh sáng, vật rơi tự do... được người ta yêu thích hơn cả. Vẻ đẹp này có một ý nghĩa rất cổ điển: mô hình thí nghiệm đơn giản, logic đơn giản, nhưng kết quả đạt được lại rất lớn.
Dưới đây là thứ tự 10 thí nghiệm được xem là "đẹp" nhất (xếp theo thứ tự thời gian).
1. Thí nghiệm đo đường kính trái đất của Eratosthenes
Vào một ngày hạ chí cách đây khoảng 2.300 năm, tại thành phố Awan của Ai Cập, Eratosthenes đã xác định được thời điểm mà ánh sáng mặt trời chiếu thẳng đứng xuống bề mặt đất. Có nghĩa là bóng của một chiếc cọc thẳng đứng trùng khớp với chân cọc.
Cùng thời điểm đó năm sau, ông đã đo bóng của một chiếc cọc đặt ở Alexandria (Hy Lạp), và phát hiện ra rằng, ánh nắng mặt trời nghiêng 7 độ so với phương thẳng đứng.
Giả định rằng trái đất là hình cầu, thì chu vi của nó tương ứng với một góc 360 độ. Nếu hai thành phố (Awan và Alexandria) cách nhau một góc 7 độ, thì góc đó phải tương ứng với khoảng cách giữa hai thành phố ấy (với giả định rằng cả hai thành phố cùng nằm trên đường xích đạo). Dựa vào mối liên hệ này, Eratosthenes đã tính ra chu vi trái đất là 250.000 stadia.
Đến nay, người ta vẫn chưa biết chính xác 1 stadia theo chuẩn Hy Lạp là bao nhiêu mét (có thể là chiều dài của một sân vận động?), nên chưa thể có kết luận về độ chính xác trong thí nghiệm của Eratosthenes. Tuy nhiên, phương pháp của ông hoàn hợp lý về mặt logic. Nó cho thấy, Eratosthenes không những đã biết trái đất hình cầu, mà còn hiểu về chuyển động của nó quanh mặt trời.
Thí nghiệm trên được xếp ở vị trí thứ 7 trong bảng "xếp hạng các thí nghiệm đẹp nhất" của Robert Crease.
2. Thí nghiệm về vật rơi tự do của Galilei
Cuối thế kỷ 16, người ta đều tin rằng, vật thể nặng rơi nhanh hơn vật thể nhẹ. Lý do là Aristotle đã nói như vậy, và quan điểm đó được Nhà thờ công nhận.
Tuy nhiên Galileo Galilei, một thầy giáo dạy toán ở Đại học Pisa (Italy) lại tin vào điều khác hẳn. Thí nghiệm về vật rơi tự do của ông đã trở thành câu chuyện kinh điển trong khoa học: Ông đã leo lên tháp nghiêng ở Pisa để thả các vật có khối lượng khác nhau xuống đất, và rút ra kết luận là chúng rơi với tốc độ như nhau! (tất nhiên phải bỏ qua sức cản của không khí). Vì kết luận này mà ông đã bị đuổi việc. Ông trở thành tấm gương sáng cho các nhà nghiên cứu sau này, vì đã chỉ ra rằng: Người ta chỉ có thể rút ra kiến thức khoa học từ các quy luật khách quan của thiên nhiên, chứ không phải từ niềm tin.
Thí nghiệm trên đứng số 2 trong "bảng xếp hạng" của Robert Crease.
3. Thí nghiệm về các viên bi lăn trên mặt dốc của Galilei
Một lần nữa, Galileo Galilei lại có một thí nghiệm được lọt vào "Top 10 thí nghiệm đẹp nhất". Để kiểm chứng một đại lượng gọi là gia tốc, Galilei đã thiết kế một tấm ván dài 5,5 mét, rộng 0,22 mét. Sau đó, ông cho xẻ một rãnh ở giữa tấm ván...
Galilei dựng tấm ván dốc xuống, rồi thả các viên bi đồng theo rãnh. Sau đó, ông dùng một chiếc đồng hồ nước để đo thời gian mà viên bi di chuyển trên một quãng đường nhất định (Galilei đã đo đường đi của viên bi và cân số nước do đồng hồ nhỏ ra để suy ra tỷ lệ giữa đường đi và thời gian di chuyển của vật thể).
Galilei khám phá ra rằng, càng xuống chân dốc, viên bi chạy càng nhanh: Quãng đường đi tỷ lệ thuận với bình phương của thời gian di chuyển. Lý do là viên bị luôn chịu tác dụng của một gia tốc (gây ra bởi lực hút của trái đất). Đó chính là gia tốc tự do (g=9,8 m/s2).
Thí nghiệm trên được xếp thứ 8 trong "bảng xếp hạng" của Robert Crease.
4. Thí nghiệm về "sự phân tán ánh sáng" của Newton
Trước Newton, người ta vẫn cho rằng ánh sáng là một thể tinh khiết, không thể phân tách (lại Aristotle!). Tuy nhiên, Newton đã chỉ ra sai lầm này, khi ông dùng lăng kính để tách ánh sáng mặt trời ra các màu khác nhau rồi chiếu lên tường.
Thí nghiệm của Newton cho thấy, ánh sáng trắng không hề "nguyên chất", mà nó là tổng hợp của một dải quang phổ 7 màu cơ bản: đỏ, da cam, vàng, xanh lá cây, xanh nước biển, chàm, tím.
Thí nghiệm về "sự phân tán ánh sáng" nói trên của Newton được xếp thứ 4 trong "bảng xếp hạng" của Robert Crease.
5. Thí nghiệm về "sợi dây xoắn" của Cavendish
Chúng ta đều biết rằng Newton là người tìm ra lực hấp dẫn. Ông đã chỉ ra rằng, hai vật luôn hút nhau bằng một lực tỷ lệ thuận với khối lượng và tỷ lệ nghịch với bình phương khoảng cách giữa chúng. Tuy nhiên, làm sao để chỉ cho người khác thấy lực hấp dẫn bằng thí nghiệm (vì nó quá yếu)?
Cuối thế kỷ 18, nhà khoa học người Anh Henry Canvadish đã làm một thí nghiệm tinh xảo như sau: Ông cho gắn hai viên bi kim loại vào hai đầu của một thanh gỗ, rồi dùng một sợi dây mảnh treo cả hệ thống lên, sao cho thanh gỗ nằm ngang. Sau đó, Cavendish đã dùng hai quả cầu chì, mỗi quả nặng 170 kg, tịnh tiến lại gần hai viên bi ở hai đầu gậy. Theo giả thuyết, lực hấp dẫn do hai quả cầu chì tác dụng vào hai viên bi sẽ làm cho cây gậy quay một góc nhỏ, và sợi dây sẽ bị xoắn một vài đoạn.
Kết quả, thí nghiệm của Canvadish được xây dựng tinh vi đến mức, nó phản ánh gần như chính xác giá trị của lực hấp dẫn. Ông cũng tính ra được một hằng số hấp dẫn gần đúng với hằng số mà chúng ta biết hiện nay. Thậm chí Canvadish còn sử dụng nguyên lý thí nghiệm này để tính ra được khối lượng của trái đất là 60x1020kg.
Thí nghiệm trên được xếp thứ 6 trong "Top 10 thí nghiệm đẹp".
6. Thí nghiệm về sự giao thoa ánh sáng của Young
Nhiều năm liền, Newton đã dẫn các nhà khoa học vào một con đường sai lầm khi ông cho rằng ánh sáng được cấu thành từ hạt chứ không phải sóng. Tuy nhiên, năm 1803, nhà vật lý người Anh Thomas Young đã phản bác được quan điểm của Newton bằng thí nghiệm sau:
Young khoét một lỗ ở cửa kính, rồi che lại bằng một miếng giấy dày, có châm một lỗ nhỏ như đầu kim. Sau đó, Young dùng một tấm gương để làm chệch hướng đi của tia sáng mảnh rọi qua lỗ nhỏ của miếng giấy. Tiếp theo, ông dùng một mảnh bìa cực mảnh (cỡ 0,1 milimét) đặt vào giữa tia sáng để tách nó ra làm hai. Khi hai tia sáng này chiếu lên tường, Young nhận thấy có các điểm sáng và điểm tối đan xen với nhau. Đây rõ ràng là hiện tượng giao thoa của ánh sáng (điểm sáng là nơi hai đỉnh sóng giao nhau, còn điểm tối là nơi một đỉnh sóng giao thoa với một lũng sóng để triệt tiêu nhau). Như vậy, ánh sáng phải có tính sóng.
Thí nghiệm trên được xếp thứ 5 trong "Top 10 thí nghiệm đẹp".
7. Thí nghiệm về "con lắc nhà thờ Pathéon"
Trong các thành tựu khoa học thế kỷ 19, có lẽ hiếm có sự kiện nào gây chấn động mạnh hơn thí nghiệm về "con lắc nhà thờ Pathéon", thực hiện bởi nhà khoa học Pháp Jean-Bernard-Léon Foucault. Với thí nghiệm này, Foucault đã chỉ ra rằng, trái đất quay xung quanh trục của nó.
Năm 1851, Foucault đã sử dụng một sợi dây thép dài 68 mét để treo một quả cầu sắt nặng 31 kg lên nóc nhà thờ Pathéon ở Paris. Sau đó, ông đã dùng một lực ban đầu để đẩy quả cầu cho nó lắc đi lắc lại.
Ở dưới đáy quả cầu, Foucault cho gắn một chiếc kim nhỏ. Mỗi khi con lắc di chuyển, chiếc kim này lại kẻ những vệt lên trên nền cát ẩm mà người ta đã cho trải trên nền nhà thờ trước đó.
Trước con mắt kinh ngạc của những người xem, vệt kim mà quả cầu để lại trên mặt cát liên tục thay đổi sau mỗi lần quả cầu lắc qua lắc lại. Tuy rằng tốc độ thay đổi rất chậm chạp, nhưng sau khoảng 30 giờ, con lắc đã đổi hướng đúng 1 vòng theo chiều kim đồng hồ. Với kết quả này, Foucault là người đầu tiên đã chỉ ra bằng thực nghiệm rằng, trái đất quay xung quanh trục của nó.
Paris nằm ở phương bắc, nên con lắc đã dịch chuyển theo chiều kim đồng hồ. Nếu thí nghiệm được thực hiện ở phương nam, con lắc sẽ chuyển động ngược với chiều kim đồng hồ. Thời gian để trục quay của con lắc đi hết một vòng cũng phụ thuộc vào từng khu vực địa lý, như ở Paris là 30 tiếng, và ở Nam Cực là 24 tiếng đồng hồ. Riêng ở xích đạo, trục quay của con lắc sẽ không chuyển dịch.
Thí nghiệm trên được xếp thứ 10 trong "bảng xếp hạng" của Robert Crease.
8. Thí nghiệm về giọt dầu của Millikan
Trước thế kỷ 17, người ta đã từng biết đến các hiện tượng điện, như sự phóng điện của các đám mây, hay điện tích sinh ra do sự cọ sát giữa hai vật. Tuy nhiên, phải đến năm 1897, nhà vật lý người Anh J.J. Thomson mới phát hiện ra một loại hạt tích điện, gọi là điện tử (electron). Có điều, ngay cả Thomson cũng đã không xác định được giá trị điện tích của electron.
Năm 1909, nhà vật lý người Mỹ Robert Millikan đã làm một thí nghiệm nổi tiếng, gọi là "thí nghiệm về giọt dầu" (oil-drop experiment). Trong thí nghiệm này, Millikan đã đặt một hiệu điện thế cực lớn (khoảng 10.000 V) giữa hai điện cực kim loại. Sau đó, ông dùng một máy phun, thả các giọt dầu rơi tự do giữa hai điện cực này.
Ban đầu, giọt dầu không tích điện, nên nó rơi dưới tác dụng của trọng lực. Tuy nhiên sau đó, Millikan đã dùng một chùm rơnghen để ion hóa giọt dầu này, cấp cho nó một điện tích. Vì thế, giọt dầu này đã rơi nhanh hơn, vì ngoài trọng lực, nó còn chịu tác dụng của điện trường. Dựa vào khoảng thời gian chênh lệch khi hai giọt dầu rơi hết cùng một đoạn đường, Millikan đã tính ra điện tích của một hạt tích điện nhỏ nhất là 1 electron: e = 1,63 · 10-19 As.
Năm 1917, Millikan lặp lại thí nghiệm trên, và đã sửa điện tích của 1 electron là e = 1,59 · 10-19 As. Những đo đạc hiện nay dựa trên nguyên lý của Millikan cho kết quả là e = 1,602 · 10-19 As.
Oil-drop experiment được đứng thứ 3 trong "bảng xếp hạng" của Robert Grease.
9. Thí nghiệm về sự bức xạ của các hạt alpha
Trước khi Ernest Rutherford thực hiện thử nghiệm về sự bức xạ của các hạt alpha tại trường Đại học Manchester vào năm 1911, người ta vẫn nhầm tưởng rằng nguyên tử có cấu trúc "mềm": gồm các hạt tích điện dương đan xen với các electron, tạo thành một hỗn hợp "plum pudding" (mứt mận).
Nhưng khi Rutherford cùng với những người trợ lý cho thực hiện thí nghiệm bắn các hạt alpha vào lá vàng mỏng, họ rất ngạc nhiên vì một phần trăm các hạt alpha đã phản hồi lại. Rõ ràng, nếu cấu trúc nguyên tử có dạng mềm như "plum pudding" thì đã không thể có sự phản hồi này, mà các hạt alpha sẽ bị dính hết vào các nguyên tử vàng, tương tự như khi người ta ném một cục bột mềm vào một chậu bánh mứt. Điều đó cho thấy trong cấu trúc nguyên tử, ngoài các electron, phải có một hạt nhân rất cứng. Rutherford đã kết luận là hầu hết khối lượng nguyên tử phải được tập trung trong một lõi nhỏ xíu gọi là hạt nhân, với những điện tử khác chuyển động xung quanh nó trên những quỹ đạo khác nhau, ở giữa là những khoảng không.
Với những sự thay đổi từ những lý thuyết định lượng, mô hình nguyên tử của Rutherford vẫn còn nguyên giá trị.
10. Hiện tượng giao thoa của hai chùm electron
Vào năm 1924, nhà vật lý người Pháp Louis de Broglie đề xướng rằng electron và những những hạt vật chất khác cũng có những thuộc tính sóng như bước sóng và tần số. Về sau, có một thí nghiệm về tính chất sóng của electron đã được thực hiện bởi Clinton Joseph Davisson và Lester Halbert Germer ở Phòng thí nghiệm Bells.
Để giải thích ý tưởng cho bản thân mình và những người khác, các nhà vật lý đã lặp đi lặp lại thí nghiệm giống của của Young về sự giao thoa ánh sáng nhưng thay chùm ánh sáng bằng chùm tia electron. Theo định luật, những dòng hạt này sau khi được chia làm hai sẽ giao thoa với nhau, để lại những phần sáng và tối như đã thấy ở thí nghiệm giao thoa ánh sáng của Young.
Đến nay, người ta vẫn không biết chắc thí nghiệm trên được thực hiện lần đầu tiên ở đâu, và ai là tác giả. Theo ông Peter Rodger, biên tập viên khoa học của tạp chí Physics Today, thì lần đầu tiên ông đọc được một bài viết về thí nghiệm này là năm 1961, và tác giả là nhà vật lý Claus Joensson ở Đại học Tueblingen (Tây Đức). Tuy nhiên, có lẽ thí nghiệm trên đã được thực hiện trước đó, có điều, đây là thời kỳ mà người ta tập trung nhiều vào các chương trình khoa học lớn, và đã không có ai để ý đến nó. Mãi đến khi người ta lật lại lịch sử các thí nghiệm khoa học và cảm nhận được "vẻ đẹp" của các chùm electron thì họ không biết được ai là người đầu tiên chứng minh được tính sóng của chúng nữa.