Phát triển lăng kính giúp pin Mặt trời nhận tối đa ánh sáng ở mọi góc

Công nghệ pin mặt trời bây giờ yêu cầu các solar cell phải hấp thụ ánh nắng một cách trực tiếp mới tạo ra được hiệu suất chuyển đổi cao nhất. Hệ quả nảy sinh là những hệ thống pin mặt trời gắn cố định chỉ có hiệu suất tối đa trong vài tiếng mỗi ngày. Nếu muốn tối ưu hiệu suất từ lúc mặt trời mọc đến khi mặt trời lặn, những tấm solar cell sẽ được trang bị hệ thống cơ học tự thay đổi góc nghiêng cho đúng vị trí ánh sáng chiếu vào. Giải pháp này vừa phức tạp, vừa tốn năng lượng để vận hành máy móc.

Đó là lúc nghiên cứu mới của các kỹ sư đại học Stanford, California, Mỹ sẽ giúp ích cho quá trình phổ biến và tăng tỷ lệ điện mặt trời sản xuất phục vụ con người.


Ánh sáng mặt trời ở mọi góc đều có thể được lăng kính thu lại với cường độ tối đa.

Kết quả nghiên cứu của họ là những lăng kính hình kim tự tháp ngược như trong hình trên. Ánh sáng mặt trời ở mọi góc đều có thể được lăng kính thu lại với cường độ tối đa, trước khi chiếu trực tiếp lên bề mặt các solar cell, để biến photon trở thành dòng electron nhờ hiệu ứng quang điện.

Nhóm kỹ sư đại học Stanford đặt tên lăng kính này là AGILE - Axially Graded Index Lenses, thay thế cho tấm kính phẳng bảo vệ những solar cell trong các tấm pin mặt trời. Thử nghiệm cho thấy lăng kính này hấp thụ được 90% lượng ánh sáng mặt trời chiếu lên bề mặt, rồi sau đó hội tụ lại chùm photon để cường độ ánh sáng tăng gấp 3 lần trước khi chạm tới solar cell. Nhờ đó, tấm pin ở góc nào cũng vận hành hiệu quả, kể cả trong những ngày thời tiết không lý tưởng.


Thành thấu kính là những mặt gương để phản xạ ngược lại ánh sáng.

Nhìn hình, lăng kính có cấu trúc tưởng chừng đơn giản, nhưng nó được tạo ra từ nhiều tầng polymer và thủy tinh chồng lên nhau, mỗi chất liệu lại có hệ số tán xạ khác nhau. Thành thấu kính là những mặt gương để phản xạ ngược lại ánh sáng, triệt tiêu hao phí năng lượng. Cũng nhờ kết cấu nhiều chất liệu như thế này, lăng kính hấp thụ được nhiều dải sóng ánh sáng khác nhau. Thử thách đầu tiên là chọn ra những chất liệu có hệ số tán xạ phù hợp, để khi ghép lại, chúng tạo ra lăng kính hoạt động hoàn hảo nhất. Một thử thách khác trong việc lựa chọn chất liệu là chúng đều phải có tỷ lệ nở nhiệt tương đồng để lăng kính không nứt vỡ.

Công trình nghiên cứu này vừa được đại học Stanford đăng trên tờ tạp chí Microsystems & Nanoengineering.

TIN CŨ HƠN

"Áo điều hòa" hòa giúp người lao động Nhật Bản hạ nhiệt trong mùa hè oi bức

Một loại áo trông có vẻ không thời trang lắm, căng phồng khi mặc vào vì có hai chiếc quạt bên trong, nhưng lại đang rất hút khách tại Nhật vì giúp người dân nơi này giải nhiệt mùa hè.

Đăng ngày: 27/08/2025
Tham vọng chế tạo Iron Man của quân đội Mỹ

Tham vọng chế tạo Iron Man của quân đội Mỹ

Bộ Tư lệnh Lực lượng Đặc biệt của Mỹ (SOCOM) hiện đang theo đuổi một chương trình mang tính cách mạng nhằm hỗ trợ năng lực siêu nhân cho binh sĩ trong nhiệm vụ tác chiến.

Đăng ngày: 24/08/2025
Công nghệ tàng hình là gì? Nó hoạt động thế nào?

Công nghệ tàng hình là gì? Nó hoạt động thế nào?

Bạn đã từng nghe đến máy bay tàng hình, tàu ngầm tàng hình nhưng bạn có biết nghĩa của tàng hình ở đây thực sự là gì?

Đăng ngày: 26/07/2025
Công nghệ nano và những ứng dụng của công nghệ nano

Công nghệ nano và những ứng dụng của công nghệ nano

Thuật ngữ công nghệ Nano (nano technology) chỉ việc nghiên cứu, học tập, tổng hợp và sử dụng các loại vật liệu, thiết bị hay kể cả các hệ thống có kích thước cỡ nano (1 phần tỷ mét).

Đăng ngày: 12/07/2025
Nano trong một thế giới cực nhỏ

Nano trong một thế giới cực nhỏ

Khoa học và công nghệ nano (nanoscience and nanotechnology) là một bộ môn khảo sát, tìm hiểu đặc tính những vật chất cực nhỏ, để thao tác (manipulate), chồng chập những vật chất này, xây dựng vật thể to hơn.

Đăng ngày: 04/07/2025
Đường hầm gió tốc độ 37.000km/h của Trung Quốc dự kiến sẽ sẵn sàng vào năm tới

Đường hầm gió tốc độ 37.000km/h của Trung Quốc dự kiến sẽ sẵn sàng vào năm tới

Đường hầm gió siêu thanh (hoặc siêu tốc) được thiết kế để mô phỏng cho các phương tiện di chuyển với tốc độ lên đến Mach 30 ở độ cao từ ở độ cao từ 40km đến 100km.

Đăng ngày: 30/06/2025
Vật liệu nhẹ nhất thế giới, nhẹ hơn cả không khí nay đã có thể in 3D

Vật liệu nhẹ nhất thế giới, nhẹ hơn cả không khí nay đã có thể in 3D

Việc có thể in 3D thành công sử dụng loại vật liệu nhẹ nhất thế giới - graphene aerogel hứa hẹn sẽ mở ra một chương mới cho ngành công nghiệp vật liệu.

Đăng ngày: 22/06/2025
Khoa Học News