Lần đầu tiên chúng ta có thể nhìn thấy trọng lực
Một thí nghiệm đột phá là tiềm năng giải mã lực hấp dẫn trong vũ trụ.
Các nhà khoa học đã dành nhiều thập kỷ cố gắng tìm hiểu trọng lực, hay lực hấp dẫn, hoạt động như thế nào ở quy mô cơ bản nhất. Tuy nhiên, chưa có lý thuyết nào có thể giải thích thỏa đáng hiện tượng này.
Gần đây, một lý thuyết mới có thể đã mang lại cho chúng ta phương tiện để lần đầu tiên "nhìn thấy" được trọng lực.

Hàng trăm năm qua, các nhà khoa học luôn tìm cách hiểu chính xác về lực hấp dẫn. (Ảnh: Ulia Koltyrina/Adobe).
Lý thuyết này cơ bản dựa trên một khái niệm cũ đã được nhà bác học Albert Einstein giải thích lần đầu tiên vào năm 1905. Khái niệm này được gọi là hiệu ứng quang điện.
Einstein đưa ra giả thuyết rằng ánh sáng bao gồm nhiều gói nhỏ không thể phân chia được, mà chúng ta gọi là photon. Từ đó ông giải thích rằng hiệu ứng quang điện có thể dự đoán năng lượng trao đổi giữa vật chất và ánh sáng, nhưng chỉ trong những khối lượng riêng biệt.
Ban đầu, lý thuyết này của Einstein không được cộng đồng khoa học chấp nhận, nhưng rồi nó đã trở thành một cuộc cách mạng trong hiểu biết của chúng ta về vật lý và cộng đồng thế giới vật lý học. Nhưng điều này có liên quan gì đến việc nhìn thấy được lực hấp dẫn?
Các nhà nghiên cứu cho biết để nhìn thấy trọng lực, họ đã sử dụng một hệ thống tương tự như hiệu ứng quang điện, nhưng thay vì ánh sáng, họ đã sử dụng các bộ cộng hưởng âm thanh và sóng hấp dẫn đi qua Trái đất.
Vì nó không hoàn toàn giống hiệu ứng quang điện nên các nhà khoa học gọi nó theo cách mới là hiệu ứng âm hấp dẫn.
Ý tưởng xuyên suốt thí nghiệm này là lấy một khối trụ làm từ một thanh nhôm nặng 4.000 pound (tương đương 1.814kg) rồi hạ nhiệt độ của nó đến trạng thái năng lượng lượng tử thấp nhất. Khi đó, các nhà nghiên cứu sẽ cho sóng hấp dẫn truyền qua khối trụ này làm nó bị kéo căng và biến dạng một chút.
Có thể nói, việc chúng ta nhìn thấy lực hấp dẫn qua thí nghiệm trên không hoàn toàn giống như việc chúng ta nhìn thấy trực tiếp lực đó, mà đơn giản là chúng ta nhìn thấy tác động của sóng trọng lực lên khối trụ.
Tuy nhiên, bằng cách theo dõi những biến dạng và dao động của khối trụ, các nhà nghiên cứu có thể dự đoán những bước nhảy lượng tử đôi khi xảy ra khi nó ở trạng thái năng lượng. Điều này sẽ giúp chứng minh được sự hấp thụ hoặc phát xạ của các hạt graviton đơn lẻ từ sóng truyền qua.
Suốt nhiều thế kỷ qua, các nhà khoa học vẫn luôn tìm cách giải thích về vũ trụ chính xác hơn.
Nếu chúng ta hiểu được lực hấp dẫn ảnh hưởng đến mọi thứ như thế nào ở mức độ cơ bản thì sẽ mở rộng hiểu biết về những bí mật mà lực này đang "nắm giữ", cũng như khám phá ra vô số bí ẩn vũ trụ khác.
Sức mạnh của Superman dưới góc nhìn khoa học: Hư cấu, nhưng không phải là bất khả thi
Những thay đổi về mặt trọng lực giữa các hành tinh khác Trái đất cũng khó có thể giúp con người sở hữu siêu sức mạnh như Superman.
Các nhà khoa học nói giáo khoa đã dạy sai về nguồn gốc sự sống trên Trái đất
Những lý thuyết về sự xuất hiện của sự sống trong sách giáo khoa đã dạy từ trước đến nay có thể đã sai.
Khoa học hé lộ trải nghiệm cận tử của con người
Mất máu đột ngột đẩy Kevin Hill đến bờ vực cái chết, anh ấy đã tiết lộ trải nghiệm cận tử (EMI) của chính bản thân, nó không phải ảo giác mà là một cái gì đó bất thường.
Tìm hiểu về bình minh và hoàng hôn
Bình minh và hoàng hôn là hai khoảnh khắc ngẳn ngủi nhưng cũng thật đẹp trong 1 ngày. Thực tế, không phải ai cũng hiểu rõ khái niệm này và sự khác biệt giữa chúng là gì?
Có gì khác biệt giữ thái giám phương Tây và thái giám Trung Quốc?
Không chỉ có thời cổ đại Trung Quốc mới có thái giám mà hoàng thất phương Tây cũng không thiếu thái giám tuy nhiên có vẻ thái giám ở phương Tây có vẻ đỡ phải chịu khổ thể xác khi bị hoạn hơn.
Bí mật 2 chấm đỏ trên khóe miệng phi tần nhà Đường
Theo các chuyên gia, thói quen trang điểm 2 chấm đỏ trên khóe miệng của phi tần không chỉ giúp trở nên xinh đẹp hơn, cuốn hút hơn mà còn ẩn giấu bí mật phòng the.


